MaxxMill® Agitate media mill

for dry and wet grinding iron-free adjustable grain size distribution

- Final product: up to d₉₇=5 µm
- Feed material: up to 2 mm
- Hardness: up to 9 Mohs

The MaxxMill[®] – agitated media mill A multi-talent

Range of application

Continuous dry and wet grinding of coarse-grained materials to fine-ground and ultrafine-ground products

Machine layout

- rotating grinding chamber
- eccentric, high-speed agitator running in counter
- or co-current direction to the rotating grinding chamber
- stationary flow deflector

Mode of operation

The grinding chamber is filled to a capacity of 80 -90 % with spherical grinding media. Unground material is fed down through the hollow flow deflector to a point near the bottom of the chamber, where it is drawn into the agitated media by rotation of the chamber. The material now moves continuously from bottom to top of the agitated media bed and is effectively ground by the input of energy from the agitator and the resulting impact and friction forces.

Ground product separation Dry grinding:

Pneumatic extraction from the surface of the agitated media bed

Wet grinding:

Separation of suspension from the agitated media by ball retaining device

Flexibility

Through careful selection of the size and quantity of grinding media used, the rotational speed of the agitator and the grinding chamber, and the rate of material throughput it is possible to adapt the grinding results over a wide range to suit specific requirements.

With many advantages

in terms of costs

- low investment costs
- low operating costs
- low specific energy consumption
- high throughput rates yet small space
 requirements
- easy integration into existing systems

reproducible product quality

- adjustable grain size distribution
- little product loss
- adaptable to changing quality requirements

in terms of process control

- continuous operation with short dwell times
- high level of automation
- high operational reliability
- simple product changeover
- on-line monitoring and control of grain size

in terms of service

- good access to wear parts and simple replacement
- easy cleaning when changing to a different product

The MaxxMill[®] series

MaxxMill® MM3 and MM5

These are the models currently available and now in use for the most diverse applications in our customers' production plants. The Eirich Test Center is equipped with a MaxxMill® MM3 for dry and wet grinding tests on a production scale.

Design options

Various geometries and agitators are used to adapt to different applications.

Wear elements

Tungsten carbide, ceramic and polyurethane are used for wear protection.

Grinding media

High grinding performance and low wear are guaranteed by EIKORIT® oxide ceramic balls and EIDURIT® steel balls.

MM5 - Wear elements made of ceramic bar agitator

MM3 – Wear elements made of tungsten carbide bar agitator

Data	MaxxMill [®] MM3	MaxxMill [®] MM5	
Capacity range (t/h) ¹	up to approx. 2.5	up to approx.10	
Grinding chamber volume (I)	190	800	
Number of agitators (-)	1	2	
Drive rating up to (kW)	25 - 50	120 - 200	
Grinding media/ball diameter	EIKORIT® oxide ceramic/EIDURIT® steel approx. 3 - 10 mm		
Max. grinding media charge weight (kg)	up to 500	up to 2100	
Feed material range (mm)	< 2	< 2	
Final fineness (d ₉₇ µm)	down to 5	down to 5	
Dimensions approx. h/w/d	2600 × 900 × 1700	3500 x 2000 x 3100	
approx. Weight	3 - 3.5 t	11.5 t	

1) dependent on feed material and required fineness of ground product

Dry grinding ... up to d97 = 5 μm

Dry grinding

with a closed grinding/classifying circuit Using the MaxxClass multiwheel air classifier it is also possible to achieve end fineness values up to d97 = $5 \mu m$.

Advantages

- high grinding effectiveness
- small space requirement
- low specific energy consumption
- free and exact setting of the required final fineness
- iron-free grinding possible

Dry grinding

with a separate air classifying circuit

e.g. for feed materials with low bulk densities **Advantages**

- ultrafine-ground products
- optimum adjustments for the MaxxMill® and the MaxxClass air classifier
- high throughput rates
- low specific energy consumption
- the classifier coarse fraction is the dedusted finished material or is recycled to the MaxxMill®

Feed Air intake MaxxMill*

Fine grinding with closed grinding/classifying circuit and different classifier wheel speeds

- talcum
- zirconium silicate

Application examples

	Throughput rate	Initial fine- ness	Final fine- ness	Spec. grinding energy consumption	Туре	
Frits	300 - 600 kg/h	90 % < 2 mm	99 % < 63 µm	50 - 70 kWh/t	MM3	
Feldspar	600 kg/h	95 % < 2 mm	98 % < 45 µm	40 kWh/t		
Limestone	600 kg/h	97 % < 500 µm	99.5 % < 5 µm	120 kWh/t	MM5	

7

- feldspar •
 - frits

•

•

•

•

•

aluminum oxide

calcium carbo-

bauxite

nate

clay

bentonite

china clay

diatomite

.

•

.

•

•

.

•

- pigments
- quartz ٠
 - special cement

Wet grinding ... up to P80 = 10 µm

Fine grinding of suspensions **Advantages**

- fully automatic, continuous operation •
- smooth processing of high-viscosity • suspensions
- no grinding media compression •
- no glide ring seals •
- agitator bearing without product contact •
- small space requirement •
- adaptation/control of product fineness and • grain size distribution
- low specific energy consumption •
- suitable for pendulum and circulation modes of • operation
- coarse raw material admitted
- can be operated in combination with classifying • equipment
- iron-free grinding possible •

Application

- fine grinding
- disagglomeration •
- dispersion
- activation of grain surfaces

Feed supply Receiver tank Product / Slurry to down-stream process Feed pump MaxxMill® Extraction pump

Wet grinding system for single-pass operating mode

Application examplesaluminum oxidecalcium carbonate		Throughput rate Dry matter	Initial fineness Wet screening	Final fineness Wet scree- ning	Specific grinding energy consumption (approx.)	Туре	
•	ceramic slip clay	Ceramic slip Porcellanato	8500 kg/h	~ 8 % > 63 µm	2.5 % > 63 µm	6 kWh/t	
•	ferrites glazes	Ceramic slip Monocottura	10 000 kg/h	~ 13.5 % > 63 µm	4 % > 63 µm	4 kWh/t	MIM5
•	ores	Glazes	400 - 600 kg/h	< 200 µm	1% > 40 µm	20 - 25 kWh/t	MM3

- calcium carbo
- ceramic slip •
- clay •
- engobes
- ferrites •
- glazes
- ores

Wet/dry finish-grinding for the optimization of existing grinding systems

Finish-grinding of suspensions and dry solid matters

Advantages

- combination with continuous and batch-type
 mills possible
- cost-effective increase of capacity with the same fineness of product
- cost-effective increase of product fineness with the same capacity
- far lower energy consumption overall
- small space requirement
- adaptation of product fineness and grain size distribution
- •

Application examples

- ceramic slip
- glazes
- ores
- special cements
- ferrites
- fillers

Drum mill (wet grinding) with downstream MaxxMill®

Drum mill (dry grinding) with downstream MaxxMill®

Wet grinding:

Final product ceramic slip with fineness 2 % > 45 μm Pregrinding: Drum mill fineness 10 % > 45 μm Finish-grinding: MaxxMill[®] end fineness 2 % > 45 μm Energy savings: 29 %

Energy savings when using a conventional drum mill combined with a MaxxMill®

MM5 for dry grinding of hard materials for wall and floor tiles

MM5 for dry grinding of china clay

The Eirich Group, with the Gustav Eirich machine factory as a strategic center in Hardheim, is a supplier of machines, systems and services for mixing technology, granulating/pelleting, drying and fine grinding. Our core competencies are procedures and processes for the treatment of loose materials, sludge and mud. We are a family-run company with 16 locations worldwide.

More information at: www.eirich.com